
2026/01/16 03:57 1/6 Steady Ticking

Turbopedia - http://turbanov.ru/wiki/

Steady Ticking

Почти все видео-игры (и, следовательно, игровые движку) имеют в общем случае технику
итерирования игрового процесса. Игра по сути является циклом. Это цикл так и называется -
игровой цикл. В каждой итерации игрового цикла игра должна приготовить и актуализировать
своё состояние, в частности, проработать рендеринг, оценить производительность и
нарисовать графику. В рамках Unreal Engine эти итерации называются тиками (ticks). Это что-
то наподобие сердца игры.

Как и сердцебиение человека, временные интервалы тиков различаются; то есть изменяется
время, необходимое для того, чтобы обработать и отрисовать новый кадр. Вы можете
неожиданно получить кадр, вычислительная или графическая нагрузка на котором будет
достаточно высокая, и время тика увеличится.

Delta Time Delta Time

Чтобы игровая логика актуализировала состояние игры, этот меняющийся временной интервал
(delta time) подаётся ей на вход как вещественное значение, чтобы построить новый “шаг” на
основе предыдущего. В Unreal Engine это делается при помощи ноды-события Tick, а
конкретно, при помощи её аргумента Delta Seconds:

Техника рабочая, например, когда вы играете в игру с заранее вычисленной анимацией, где
результат всегда определён во времени. К несчастью, так бывает не всегда, так как игры в
большинстве своём интерактивны и нагрузка меняется от кадра к кадру.

Если применить переменное время кадра к такому процессу, как просчитывание коллизий, то
их устойчивость будет значительно падать, если время тика увеличится. Рассмотрим
следующий пример.

Пусть у нас есть шар с симуляцией физики. Шар сдвигается со своей позиции в зависимости от
своей скорости (которая определяется на основе гравитации и других действующих сил).
Когда время тика стабильно и достаточно мало, всё работает, как ожидалось. Но как только
один из кадров “даёт сбой”, система сразу же становится крайне нестабильной и мяч с
лёгкостью может проскочить сквозь пол, что приводит к совершенно некорректному
поведению.



2026/01/16 03:57 2/6 Steady Ticking

Turbopedia - http://turbanov.ru/wiki/

Large Delta Time

Smaller Delta Time

Наша цель - стабилизировать время кадра и нормализовать вычисления.

Stable Delta Time

В физике Unreal Engine есть способ стабилизировать время кадра. Это достигается
ограничением максимального времени тика:

Если текущий кадр занимает большее время, чем заданное значение, физика движка получит
это значение как свой delta time, для вычисления текущего шага. Это, в свою очередь,
вызовет в замедление игрового времени. Что-то наподобие slow-mo эффекта, а симуляция не
потеряет своей стабильности, то есть, стабильность будет не ниже, чем предоставленное
допустимое значение.

Другой способ достичь стабильности физики - использовать такую технику Unreal Engine, как



2026/01/16 03:57 3/6 Steady Ticking

Turbopedia - http://turbanov.ru/wiki/

sub-stepping. Для большей информации по этой теме можете посмотреть официальную
документацию по ссылке.

Apparatus предоставляет схожую sub-stepping-гу концепцию, которую мы называем “Steady
Ticking”. Каждый Mechanism реализовывает специальное событие Steady Tick:

Устойчивые тики имеют фиксированный временной интервал и выполняются параллельно
основным тикам (event-tick), у которых этот интервал может меняться. Слово “параллельно”
совершенно не означает мульти-поточность, напротив, подчёркивает логику вызовов.

Steady Ticks

Variable Ticks

На картинке выше вы могли заметить, что может произойти несколько устойчивых тиков за
один переменный тик. Также, как и несколько переменных тиков могло произойти за один
устойчивый. Такие различия могут привести к нежелательным резким перемещениям объектов
(или выполнения другой логики). Чтобы решить этот вопрос нужна интерполяция.

В течение переменного “родного” тика мы интерполируемся между предыдущим устойчивым
тиком и следующим. Сам пользователь может выполнять необходимую интерполяцию, но
Apparatus уже предоставляет требуемый функциональный базис, чтобы это сделать.

Для начала рассмотрим ноду Steady Frame Ratio (соотношение устойчивых кадров):

Эта нода возвращает отношение текущего переменного тика к активному устойчивому. Для
лучшего понимания, просто посмотрите эту схему:

https://docs.unrealengine.com/en-US/InteractiveExperiences/Physics/Substepping/index.html
http://turbanov.ru/wiki/ru/toolworks/docs/apparatus/mechanism


2026/01/16 03:57 4/6 Steady Ticking

Turbopedia - http://turbanov.ru/wiki/

Steady Ticks

Variable Ticks

1/3 1/2 1/4 3/4 9/10

Steady Frame Ratio

Это отношение, являясь числом из отрезка [0.0, 1.0], может быть использовано для
интерполяции анимации на основе её предыдущей и следующей состояний. Чтобы этого
достичь, ваши механики, выполняемые устойчивыми тиками, должны подготовить оба эти
состояния в течении своего времени выполнения. Обычный же (переменный) тик может
использовать ноду Lerp, чтобы обеспечить непосредственно гладкость и неразрывность.

Иногда бывает утомительно (или довольно трудно) управлять обеими предыдущим и
следующим состояниями в некоторых вспомогательных переменных. Вы, возможно, захотите
использовать текущее состояние объекта, вместо предыдущего, - например, можно
использовать transform-вектор для вычисления следующего шага. Поэтому мы предлагаем
вам метод, который удобно использовать и при таком подходе, - нода Steady Future
Factor.

Эта нода несколько похожа на Steady Frame Ratio, по крайней мере тем, что возвращает
единственное число с плавающей точкой из отрезка [0.0, 1.0]. Но отличается она, на самом
деле, причиной, по которой выходные значения лежат именно в таком промежутке.
Проиллюстрируем это на схеме:

https://docs.unrealengine.com/en-US/BlueprintAPI/Math/Float/Lerp/index.html
https://docs.unrealengine.com/en-US/BlueprintAPI/Math/Float/Lerp/index.html


2026/01/16 03:57 5/6 Steady Ticking

Turbopedia - http://turbanov.ru/wiki/

Steady Ticks

Variable Ticks

1/2 1/5 3/4 3/41/3 6/10

Steady Future Factor

Как вы можете видеть, последнее изменение (было оно в устойчивом или обычном тике)
отслеживается и запоминается в качестве стартовой точки для отношения. Вторая часть такая
же, как и для узла Steady Frame Factor, и фактически представляет собой временную метку
следующего будущего устойчивого кадра/*не понял предложения, прогнал через Google-
translate: The second part is the same as for the Steady Frame Factor node and actually represents a
timestamp of the next future steady frame.*/. Используя ноду Steady Future Factor, вы
можете использовать текущее актуальное состояние как базу для Lerp‘а со следующим
состоянием. Просто будьте внимательны к своим вычислениям и убедитесь в том, что в
реально поддерживаете трек того, что вы хотите интерполировать.

Обе эти ноды могут быть использованы прямо в tick-событиях ваших механик. Однако, мы
имплементировали специальное событие для механик, так называемое Presentation Tick-
событие, которая естественным образом связывает вышеперечисленные pure-функции:

Это событие наступает после нормальных переменных тиков (а значит, и после тиков
устойчивых) и подразумевает использование для вычисления визуального отклика механик.
Интерполяция механик, очевидно, тоже может быть вычислена. Посмотрите на этот
всеобъемлющий пример механики интерполяции 3d-положения объекта (выдержка из нашего
примера-платформера):

https://docs.unrealengine.com/en-US/BlueprintAPI/Math/Float/Lerp/index.html
https://docs.unrealengine.com/en-US/BlueprintAPI/Math/Float/Lerp/index.html
https://github.com/toolworks/ApparatusPlatformer


2026/01/16 03:57 6/6 Steady Ticking

Turbopedia - http://turbanov.ru/wiki/

Самая важная Apply Offset функция выглядит так:

Завершая тему статьи, следовало бы сказать о том, что описанные техники вовсе не являются
обязательными к применению. Вы можете выполнять свои механики так, как захотите, и
настраивать движок так, чтобы он обрабатывал только определённые FPS. Мы же, тем не
менее, предлагаем вам путь для достижения стабильной частоты кадров геймплея и также
рекомендуем использовать его для поддержания стабильности.

From:
http://turbanov.ru/wiki/ - Turbopedia

Permanent link:
http://turbanov.ru/wiki/ru/toolworks/docs/apparatus/steady-tick

Last update: 2021/04/21 01:29

http://turbanov.ru/wiki/
http://turbanov.ru/wiki/ru/toolworks/docs/apparatus/steady-tick

	Steady Ticking

