
2026/01/06 22:19 1/3 Оперирование

Turbopedia - http://turbanov.ru/wiki/

Оперирование

Более новый и функциональный способ оперировать над Цепями через процесс, называемый
оперирование (operating).

Организация в C++

Использование лямбда-выражений

Можно легко оперировать над Цепями через C++ лямбды и вот как следует это делать:

Chain->Operate([](FMyTrait Trait)
{
 ...
});

Обратите внимание, что вам не позволяется получать ссылку на трейт, если вы итерируетесь
по не-твердотельной цепи, - разрешено только копирование. Итак, оперировать над
твердотельной Цепью вам следует следующим образом:

SolidChain->Operate([](FMyTrait& Trait)
{
 ...
});

Теперь можете менять свойства (поля) трейта напрямую, без привлечения копирования.

Параллельность

Твердотельные цепи также поддерживают специальный тип оперирования - мультипоточный.
К названию функции, которую надо вызвать, по такому случаю подписали Concurrently, и
она принимает ещё два аргумента:

максимальное количество потоков, выделенных на выполнение задачи, и
минимальное число слотов на каждый поток.

Например:

SolidChain->OperateConcurrently([](FMyTrait& Trait)
{
 ...

2026/01/06 22:19 2/3 Оперирование

Turbopedia - http://turbanov.ru/wiki/

}, 4, 32);

Второй параметр помогает ограничить количество потоков. Если слишком мало доступных
слотов, излишние потоки не понадобятся и они не будут помещены в очередь.

Доставка аргументов

Хорошая особенность оперирования - это то, что аргументы функции решаются и
доставляются автоматически в вашу логику. Например, если вы также модифицировали
текущую сущность итерирования, то просто укажите хэндлер в самом начале кода:

Chain->Operate([](FSubjectHandle Subject, FMyTrait Trait)
{
 ...
});

Это, конечно, должно соответствовать твердотельности цепи. Для твердотельной цепи код
выглядит так:

SolidChain->Operate([](FSolidSubjectHandle Subject, FMyTrait& Trait)
{
 ...
});

Вы можете запрашивать разную информацию контекста внутри цикла. Например:

Chain->Operate([](const FChain* Chain, const FChainCursor& Cursor,
ISubjective* Subjective, FMyTrait Trait, UMyDetail* Detail)
{
 ...
});

Индекс текущей итерации

В случае, если надо получить номер текущего Слота в итерации (т.е. место сущности в цепи),
используйте выделенный GetChainSlotIndex() метод соответствующего типа курсора. Курсор
можно получить так же, как было представлено в предыдущей секции:

SolidChain->Operate([](FPlacementTrait& Placement, const FSolidChainCursor&
Cursor)
{
 Placement.Number = Cursor.GetChainSlotIndex();
});

https://turbanov.ru/toolworks/apparatus/docs/api/struct_t_chain_1_1_f_cursor.html#a18005eddb3a624bdabb76475c3863751
https://turbanov.ru/toolworks/apparatus/docs/api/struct_t_chain_1_1_f_cursor.html#a18005eddb3a624bdabb76475c3863751

2026/01/06 22:19 3/3 Оперирование

Turbopedia - http://turbanov.ru/wiki/

Остановка

Хотя и непонятно, зачем вдруг понадобится останавливать процесс итерирования над цепью
вручную, но этого легко достичь при помощи выделенного метода.

Например:

int32 Counter = 0;
Chain->Operate([&Counter](const FChain* Chain, FMyTrait Trait)
{
 if (Counter > 100)
 {
 Chain->StopIterating();
 // Досрочно возвращаем управление, чтобы не инкрементировать счётчик:
 return;
 }
 Counter += Trait.Value;
});

From:
http://turbanov.ru/wiki/ - Turbopedia

Permanent link:
http://turbanov.ru/wiki/ru/toolworks/docs/apparatus/operating

Last update: 2022/06/08 18:00

https://turbanov.ru/toolworks/apparatus/docs/api/struct_t_chain.html#aec97fe73be3d6d9f4c279c7427ed99d6
https://turbanov.ru/toolworks/apparatus/docs/api/struct_t_chain.html#aec97fe73be3d6d9f4c279c7427ed99d6
http://turbanov.ru/wiki/
http://turbanov.ru/wiki/ru/toolworks/docs/apparatus/operating

	Оперирование
	Организация в C++
	Использование лямбда-выражений
	Параллельность
	Доставка аргументов
	Индекс текущей итерации
	Остановка

