
2026/01/16 14:33 1/4 Итерирование

Turbopedia - http://turbanov.ru/wiki/

Итерирование

Чтобы реализовать вашу реальную логику Механики, вам потребуется обработать все
Сущности, удовлетворяющие Фильтру. В целях эффективности и последовательности это
делается вручную через Цепи. Итерируясь по цепям, вы итерируетесь по всем Сущностям и
Сущностным объектам внутри конкретной цепи.

В итерации по цепям помогают Курсоры. Их семантика напоминает итераторы в стандартных
контейнерах.

Работа в C++

Итерирование по цепи сделано через специальный тип объекта Курсор (Cursor). Можете
использовать столько, сколько захотите, но обычно, достаточно одного:

FChain::FCursor Cursor = Chain->Iterate();

Если цепь твердотельная, то код будет выглядеть так:

FSolidChain::FCursor SolidCursor = SolidChain->Iterate();

Когда вы получили желанный курсор, вы можете построить простой while-цикл:

while (Cursor.Provide())
{
 auto Trait = Cursor.GetTrait<FMyTrait>();
 ...
}

Provide() метод подготавливает нужное состояние и возвращает false, когда
закончились слоты в цепи (true иначе).

Имея твердотельный Курсор вы можете получить прямую ссылку (без копирования) на трейт
(используя метод GetTraitRef()):

while (SolidCursor.Provide())
{
 auto& Trait = SolidCursor.GetTraitRef<FMyTrait>();
 ...

http://turbanov.ru/wiki/ru/toolworks/docs/apparatus/filter
http://turbanov.ru/wiki/ru/toolworks/docs/apparatus/enchaining
http://turbanov.ru/wiki/ru/toolworks/docs/apparatus/solidity
https://turbanov.ru/toolworks/apparatus/docs/api/struct_t_chain_1_1_f_cursor.html#a4d4c891b529d09be7a57791cd886587b
https://turbanov.ru/toolworks/apparatus/docs/api/struct_t_chain_1_1_f_cursor.html#a4d4c891b529d09be7a57791cd886587b
https://turbanov.ru/toolworks/apparatus/docs/api/struct_t_chain_1_1_f_cursor.html#acf92a6a5684871a0c24f1e7360314ada
https://turbanov.ru/toolworks/apparatus/docs/api/struct_t_chain_1_1_f_cursor.html#acf92a6a5684871a0c24f1e7360314ada

2026/01/16 14:33 2/4 Итерирование

Turbopedia - http://turbanov.ru/wiki/

}

Пожалуйста, заметьте, что цепи утилизируются автоматически, когда все итерируемые
курсоры закончили итерироваться по слотам. Чтобы предотвратить такое поведение особо,
можете использовать вызовы Retain()/ Release(), чтобы самостоятельно
контролировать время жизни объектов:

Chain->Retain(); // Забрать цепь.
FChain::FCursor Cursor = Chain->Iterate();
while (Cursor.Provide())
{
 ...
}
// Здесь выполняем операции над цепью.
// Гарантируется, что она не будет удалена.
...
Chain->Release(); // Очищаем данные цепи.

Встроенные курсоры

Аппарат предоставляет способ итерироваться по цепям встроенными Курсорами. В основном,
эта технология используется внутри плагина для корректной работы Blueprint-ов, и вам её
стоит избегать в своём C++ коде.

Код будет довольно прост. Он состоит из while-цикла с одним условием:

while (Chain.BeginOrAdvance())
{
 ...
}

Внутри этого цикла вы можете реализовать нужную логику, используя Сущности напрямую
или служебные методы Цепей:

while (Chain.BeginOrAdvance())
{
 FSubjectHandle Subject = Chain.GetSubject();
 UMyDetail* MyPosition = Chain.GetDetail<UMyDetail>();
 FMyTrait MyVelocity;
 Chain.GetTrait(MyVelocity);
 MyPosition->X += MyVelocity.VelocityX * DeltaTime;
 MyPosition->Y += MyVelocity.VelocityY * DeltaTime;
 ...
 MyVelocity.VelocityX = 0;
 MyVelocity.VelocityY = 0;

https://turbanov.ru/toolworks/apparatus/docs/api/struct_t_chain.html#abdde97a57f62214dff4e643287eb2fae
https://turbanov.ru/toolworks/apparatus/docs/api/struct_t_chain.html#a665154da00eac2bcc7760851583db281
https://turbanov.ru/toolworks/apparatus/docs/api/struct_t_chain.html#abdde97a57f62214dff4e643287eb2fae
https://turbanov.ru/toolworks/apparatus/docs/api/struct_t_chain.html#a665154da00eac2bcc7760851583db281
https://turbanov.ru/toolworks/apparatus/docs/api/struct_f_subject_handle.html
https://turbanov.ru/toolworks/apparatus/docs/api/struct_f_subject_handle.html
https://turbanov.ru/toolworks/apparatus/docs/api/struct_f_chain.html
https://turbanov.ru/toolworks/apparatus/docs/api/struct_f_chain.html

2026/01/16 14:33 3/4 Итерирование

Turbopedia - http://turbanov.ru/wiki/

 Subject.SetTrait(MyVelocity);
}

Когда указатель-Курсор Цепи пройдёт последнюю доступную Сущность (или Сущностный
объект), Цепь будет уничтожена и ранее заблокированные чанки и ремни вновь
разблокируются, все ожидаемые структурные изменения будут незамедлительно выполнены
(если они вообще были).

Прямое итерирование

Если вам необходимо итерироваться по чанкам напрямик, вы можете инициализировать Чанк-
Прокси. Обычно, вам потребуется проитерироваться по всем собранным Прокси через
соответсвующий Enchain метод и в каждом чанке итерироваться по его Сущностям-слотам.

Пример будет таким:

TArray<TChunkProxy<FSolidSubjectHandle, FJumpingTrait>> ChunkProxies;
Mechanism->Enchain(TFilter<FJumpingTrait>(), ChunkProxies);
for (int32 i = 0; i < ChunkProxies.Num(); ++i) // Итерируемся по всем
подходящим чанкам...
{
 auto& ChunkProxy = ChunkProxies[i];
 for (int32 j = 0; j < ChunkProxy.Num(); ++j) // Итерируемся по слотам...
 {
 // Perform the necessary logic...
 ChunkProxy.TraitRefAt<FJumpingTrait>(j).Position +=
FVector::UpVector * DeltaTime;
 }
}

Заметьте, однако, что этот подход абсолютно ручной, и не выполняет какие-либо логические
проверки во время итерирования, например, совпадение флагов.

Если вы также выполняете изменение топологии внутри ваших циклов, то ваши сущности
могут произвольно изменить свои чанки или слоты, поэтому вам скорее всего потребуется
проверять слоты на (не-)свежесть.

Сделать это можно так:

for (int32 j = 0; j < ChunkProxy.Num(); ++j) // Итерируемся по всем слотам
чанка...
{
 if (ChunkProxy.IsStaleAt(j)) continue; // Пропустить сущность, если она была
перемещена или удалена...

 ChunkProxy.SubjectAt(j).SetTrait(FSpeedBoostTrait{10.0f});
}

https://turbanov.ru/toolworks/apparatus/docs/api/class_a_mechanism.html#ae72188d973bed3d8484dc5ab87e5e1e1
https://turbanov.ru/toolworks/apparatus/docs/api/class_a_mechanism.html#ae72188d973bed3d8484dc5ab87e5e1e1
http://turbanov.ru/wiki/ru/toolworks/docs/apparatus/flagmark

2026/01/16 14:33 4/4 Итерирование

Turbopedia - http://turbanov.ru/wiki/

Итерация чанков напрямую (через прокси) может дать определенный прирост
производительности по сравнению с обычной итерацией и оперированием. В основном это
связано с возможностью контролировать каждый аспект итерации вручную и исключать все
лишние проверки. Вам просто нужно точно знать, что вы делаете и чего пытаетесь достичь,
так как этот способ менее безопасен.

From:
http://turbanov.ru/wiki/ - Turbopedia

Permanent link:
http://turbanov.ru/wiki/ru/toolworks/docs/apparatus/iterating

Last update: 2022/06/05 12:31

http://turbanov.ru/wiki/ru/toolworks/docs/apparatus/operating
http://turbanov.ru/wiki/
http://turbanov.ru/wiki/ru/toolworks/docs/apparatus/iterating

	Итерирование
	Работа в C++
	Встроенные курсоры
	Прямое итерирование

