
2026/01/26 03:17 1/4 Apparatus - Обзор архитектуры

Turbopedia - http://turbanov.ru/wiki/

Apparatus - Обзор архитектуры

Apparatus - многогранный инструмент. В большей степени он - фреймворк с самостоятельной
экосистемой, нежели простой плагин. Чтобы использовать его сознательно и эффективно, вам
понадобится понимать, как он на самом деле работает. Мы не говорим о какой-то
сверхспецифичной реализации, но об основных высокоуровневых архитектурных концептах.
Начнём наше знакомство с высокоуровневого сингл-тона - сущности, называемой “машина”
(Machine).

Machine

Машина - это основная система Apparatus’а. Она глобально управляет всеми объектами и
поэтому является глобальным сингл-тоном. В реальности это объект класса UObject, но его
продолжительность жизни определяется внутренним состоянием, а не стандартными
механизмами сборщика мусора (garbage collector). Если машина имеет несколько механизмов,
определённых внутри неё, или на сцене находятся несколько сущностей Subject-ов, то она
сохраняется и остаётся доступной. Только если она перестаёт быть необходимой, а её
поддержание становится бессмысленным, машина поставляется в очередь на удаление.

Внутри машины в частности и в самом Apparatus’е существуют два “мира”. В этой статье мы и
разберём два уровня обработки ECS-данных, - каждый со своими уникальными особенностями
и оптимизациями. Конечно, доступна документация API для класса UMachine, которую вы
смело можете использовать в качестве дополнительного источника.

Низкоуровневые трейты

Начнём с низкого уровня. Подсистема Trait-ов в реальности была разработана позднее первого
релиза, однако теперь она является центром фреймворка и предоставляет необходимую
функциональность высокому уровню для полноценной работы плагина.

Сам подход ECS разрабатывался с производительностью в высшем приоритете. Сборка и
линейное хранение данных в памяти, что может быть проще? Хоть и не так просто это
реализовать в силу динамически структурируемых сущностей и требований к утончённой
“бухгалтерии”, сама идея вполне корректна. Аппаратный уровень центрального процессора и
оперативной памяти реально настроен на именно эту организацию данных. Сегодня CPU
наделены кэшами громадной ёмкости, и вычислительная машина используется более
эффективно, если обрабатываемые данные расположены друг за другом.

Модель памяти в Unreal Engine не гарантирует такой уровень линейности; причудливо и
зачастую недееспособно используются собственные аллокаторы. Вот почему мы создали
подсистему трейтов.

Трейты основаны прежде всего на структурах. Последние эксклюзивно управляются
Apparatus’ом и хранятся в специальных буферах, называемых чанками (Chunks), так как и
предполагалось - один за другим, последовательно, без пробелов.

https://turbanov.ru/toolworks/apparatus/docs/api/class_u_machine.html
https://turbanov.ru/toolworks/apparatus/docs/api/class_u_machine.html
https://turbanov.ru/toolworks/apparatus/docs/api/class_u_machine.html
https://docs.unrealengine.com/en-US/ProgrammingAndScripting/Blueprints/UserGuide/Variables/Structs
https://docs.unrealengine.com/en-US/ProgrammingAndScripting/Blueprints/UserGuide/Variables/Structs


2026/01/26 03:17 2/4 Apparatus - Обзор архитектуры

Turbopedia - http://turbanov.ru/wiki/

Трейты, в свою очередь, собираются в коллекции (иначе это вовсе не было бы реализацией
ECS). Эти коллекции называются сущностями - Subjects. На сущности ссылаются специальные
хэндлеры Handles, не указатели. Они абсолютно независимы от garbage collector’а (GC-
independent) и утилизируются отдельно.

Такой дизайн увеличивает производительность механик обрабатывающих сущности, но на
самом деле имеет некоторые ограничения по сравнению с высокоуровневыми деталями
(Details).

Высокоуровневые детали

В отличие от трейтов детали - не структуры. Они относятся к инстанциям высших типов самого
Unreal’а - к Объектам (или к UObject-ам, если быть более точным). Это делает их реально
универсальными, если говорить об использовании уже существующей функциональности
движка. Кроме того, они также поддерживают иерархическую фильтрацию и даже
итерирование по мульти-деталям (что очень полезно, когда надо справится с несколькими
деталями одного типа на одном Subject-е).

Детали всегда хранятся в соответствующих *Subjective*-вах - в специальных типов
контейнеров, которые прямо ассоциируются с обыденными Actor’ами или пользовательскими
виджетами (User Widget). Объекты типа “сущностный” (то есть Subjective-вы) не итерируются
напрямую, но через специальную кэш-память, называемую ремнями (Belt). Ремни - отдельный
тип данных, который используется сугубо в целях оптимизации, хранит только ссылки на
оригинальные детали. Вы можете назначить собственные ремни вручную на объектах
Subjective-а и они будут соответственно расширятся, если потребуется.

Пожалуйста, заметьте, что все Subjective-вы внутренне являются сущностями (Subjectives are
actually Subjects). Они имеют все сущностные хэндлеры в себе. Это, естественно, означает,
что вы можете добавлять трейты на них. Вы можете взаимозаменяемо использовать оба мира
вместе, если необходимо. Все зависит от вас.

Объединение в цепи

Одним из главных технических целей плагина - эффективно оперировать над большим
количеством сущностей и объектами типа “сущностный” (operate over Subjects & Subjectives -
введённые нами термины для ECS сущностей) по заданному фильтру. Таким образом был
разработан специальный концепт объединения в цепи (enchaining).

Объединение в цепи - это процесс сбора всех в текущий момент доступных ремней и чанков,
удовлетворяющих определённому фильтру, и сохранение их в специальный тип массива,
который и называется цепью (Chain). Цепи управляются сингл-тоном машиной, а вы не
создаёте их вручную, даже если используете плагин в C++.

Вместо этого, вам следует использовать глобальные (статические) методы создания цепей,
передавая им на вход желаемый фильтр отбора. Вы можете объединять в цепи чанки или
ремни. Как только они собраны в цепь и сама цепь начинала свой жизнь в коде программы,
помещенные в неё ремни и чанки поддерживаются в заблокированном (locked) состоянии.

https://docs.unrealengine.com/en-US/API/Runtime/CoreUObject/UObject/UObject
https://docs.unrealengine.com/en-US/API/Runtime/CoreUObject/UObject/UObject
https://turbanov.ru/toolworks/apparatus/docs/api/lass_i_subjective.html#a0193ef8d2268c03c0aedc5d584383f71
https://turbanov.ru/toolworks/apparatus/docs/api/lass_i_subjective.html#a0193ef8d2268c03c0aedc5d584383f71
http://turbanov.ru/wiki/ru/toolworks/docs/apparatus/ecs-glossary
https://turbanov.ru/toolworks/apparatus/docs/api/class_u_machine.html#a2e5ea120176a0485076c903cc98e6ea2
https://turbanov.ru/toolworks/apparatus/docs/api/class_u_machine.html#a2e5ea120176a0485076c903cc98e6ea2


2026/01/26 03:17 3/4 Apparatus - Обзор архитектуры

Turbopedia - http://turbanov.ru/wiki/

Блокировка

В процессе итерации по цепям и их соответствующим чанкам и ремням мы должны
гарантировать определённый уровень их неизменности. Мы же не хотим, чтобы произошла
операция над одной и той же сущностью дважды, например, если она перемещалась между
чанками вследствие структурной модификации внутри текущей итерации. Функции
блокировки белтов и чанков были добавлены конкретно для этой цели.

Когда чанк (Chunk) или ремень (Belt) поставляется в цепь, его внутренний счётчик блокировок
инкрементируется, делая его “замороженным” по отнощению к оперирующей механике
(которая и намерена работать с инстанциированной цепью). Вы можете спокойно использовать
курсоры (Cursor) цепей, позволяя Apparatus’у регулировать все особенности блокировки и
деблокировки за вас.

Фильтрация

Фильтрация (Filtering) - это естественная часть правильной ECS-реализации. Она позволяет вам
выбирать определённые сущности и Subjective-вы для работы. Использование слова
“выбор”(“select”) в данном контексте не случайно и может стать очень знакомым для
программиста баз данных. С технической точки зрения это достаточно близкие термины. Вы
определяете пункт “WHERE” с набором нужных вам условий соответствия. Последние могут
быть как включающими (положительными), так и исключающими (отрицательными).

Apparatus использует все сорта разнообразных оптимизирующих схем и кэшей, чтобы сделать
процесс фильтрации настолько быстрым, насколько это возможно. Вы не должны волноваться
по этому поводу.

API документация для фильтров.

Итерирование

Пусть имеется набор инициализированных и настроенных сущностей. Белты и чанки
объединены в цепи, и теперь вы готовы итерироваться по ним, чтобы произвести необходимую
логику игры или приложения. Это можно сделать при помощи очень распространённого
концепта итераторов (Iterators) и курсоров (Cursors).

Оба типа - ремни и чанки - имеют собственные итераторы, но вы вряд ли будете использовать
их напрямую. Напротив, вы скорее всегда будете использовать курсоры цепей (Chain Cursors).
Они, по сути, те же итераторы, с хорошо подобранным названием, которое помогает устранить
возможную двусмысленность. Сейчас вам следует только использовать неявные курсоры по
умолчанию (default implicit Cursor), поскольку многопоточность является планируемой
особенностью и вам редко может понадобится итерироваться по одному белту или чанку
несколькими разными курсорами одновременно.

Документация для методов Begin и Advance приведена соответственно.

https://turbanov.ru/toolworks/apparatus/docs/api/struct_f_filter.html
https://turbanov.ru/toolworks/apparatus/docs/api/struct_f_filter.html
https://turbanov.ru/toolworks/apparatus/docs/api/struct_f_filter.html
https://turbanov.ru/toolworks/apparatus/docs/api/struct_f_chunk_chain.html#a81fe6a135e15ca00736cdd6ef527c3f3
https://turbanov.ru/toolworks/apparatus/docs/api/struct_f_belt_chain.html#a8552c76ac87bcafb0a8077bbea5ade90
https://turbanov.ru/toolworks/apparatus/docs/api/struct_f_chunk_chain.html#a81fe6a135e15ca00736cdd6ef527c3f3
https://turbanov.ru/toolworks/apparatus/docs/api/struct_f_belt_chain.html#a8552c76ac87bcafb0a8077bbea5ade90


2026/01/26 03:17 4/4 Apparatus - Обзор архитектуры

Turbopedia - http://turbanov.ru/wiki/

Послесловие

Этот обзор, конечно, является просто обзором на то, что Apparatus представляет собой в
реальности, но мы надеемся, что он поможет вам освоить основные идеи предлагаемого
набора инструментов. Мы продолжим вдаваться в подробности особенностей реализации в
некоторых отдельных статьях этой турбопедии. Следите за обновлениями.

From:
http://turbanov.ru/wiki/ - Turbopedia

Permanent link:
http://turbanov.ru/wiki/ru/toolworks/docs/apparatus/architecture?rev=1623601053

Last update: 2021/06/13 16:17

http://turbanov.ru/wiki/
http://turbanov.ru/wiki/ru/toolworks/docs/apparatus/architecture?rev=1623601053

	Apparatus - Обзор архитектуры
	Machine
	Низкоуровневые трейты
	Высокоуровневые детали
	Объединение в цепи
	Блокировка
	Фильтрация
	Итерирование
	Послесловие


