2025/11/03 09:26 1/4 Steady Ticking

Steady Ticking

<HTML>
 </HTML>

Almost all video-games (and thereby game engines) have a common technique for iterating on the
game process. The game is basically run in a loop. This loop is thereby called a game loop. On each
iteration of this loop the game should prepare and actualize the state of the game for rendering and
perform the graphics rendering itself. These iterations are called Ticks within Unreal Engine. They are
like a heartbeat to your game.

Like a human heartbeat, tick intervals can be varying in time, i.e. the time that it takes to process and
render each frame is variable. You may suddenly have a computationally and/or graphically intensive
frame, for example, and this in turn may result in a longer tick interval.

Delta Time Delta Time

| — | | | | |- | |
| I | | T

In order for the game logic to actualize the game state this variable delta time is usually passed to it
to be able to “step” to this current frame from the previous one. This is implemented with a Tick
event node and a Delta Seconds argument within Unreal Engine:

<> Event Tick

Delta Seconds @

This technique is fine when you're playing some kind of pre-baked animation where results are clearly
determined in time. Unfortunately that is not always the case, since games are generally interactive
and the situation always changes.

If we apply a variable frame rate to such concepts as collision detection and physics simulation, their
stability will decrease considerably if the frame time is increased. Consider the following example.

We have a ball physics simulation. The ball is stepping its position according to its velocity (which in
turn results from gravity and other forces application). When the time step is stable and small
enough, everything works as expected, but as soon as the one of the frames lags the system
becomes unstable and the ball may actually fall through the ground, resulting in a totally inaccurate
behavior.

Turbopedia - http://turbanov.ru/wiki/

2025/11/03 09:26 2/4 Steady Ticking

Large Delta Time

Smaller Delta Time

Our goal would be to stabilize the frame time and in turn stabilize the calculations.

Stable Delta Time

Unreal Engine’s physics engine has a way to stabilize the frame rate by supplying the maximum
frame time:

4 Framerate

L Tk 00 o]

cs Delta Time 0,033333| N

Substepping .

If the actual frame time is higher than this value, the physics engine will still receive this value as its
delta time to step with. This in turn will result in a slowdown of game time. Something like a slow-mo
effect, but the simulation would not lose its stability, i.e. it won’t be lower than the supplied tolerated
value.

Another way to achieve the physics stability effect is to use Unreal Engine’s sub-stepping. You can
read the linked official documentation for more information on that topic.

Turbopedia - http://turbanov.ru/wiki/

https://docs.unrealengine.com/en-US/InteractiveExperiences/Physics/Substepping/index.html

2025/11/03 09:26 3/4 Steady Ticking

Apparatus provides a somewhat similar concept to a sub-stepping that is called “Steady Ticking”.
Each of Mechanisms implements a special Steady Tick event:

<> Event Steady Tick

Delta Seconds @

Steady ticks are fixed-rate ticks that a run in parallel to the main variable-rate ticks. The “in parallel”
wording isn't related to multi-threading but merely a logical terminology.

Variable Ticks

Each stable tick should actualize the

On the picture you can see that there may be multiple steady ticks during a single variable tick
interval. Likewise there may be multiple variable ticks during a single steady tick interval. These
multiple ticks can result in some undesired jerky movement. To solve this issue an interpolation is
needed.

During the variable “native” ticking we have to interpolate between the previous steady state and the
next one. It’s up to the user to do the actual interpolation but Apparatus provides a functional basis to
do this.

First, there is a steady frame ratio node available:

" f steady Frame Ratio

Target | self | Return Value @ —

This node returns the ratio of the current variable tick in relation to an active steady frame it resides
within. For a better understanding see the following schematic:

Turbopedia - http://turbanov.ru/wiki/

http://turbanov.ru/wiki/en/toolworks/docs/apparatus/mechanism

2025/11/03 09:26 4/4 Steady Ticking

Variable Ticks

This ratio, which is bound from 0.0 to 1.0 (both inclusively), can be used to interpolate the animated
visual feedback of some value based on its previous and the next state. In order to achieve that, your
steady ticking mechanics have to prepare both states during their processing, while perhaps
swapping the past state with the future one. The usual variadic ticking then can use a Lerp node to
implement the actual smoothing.

From:
http://turbanov.ru/wiki/ - Turbopedia

Permanent link: :
http://turbanov.ru/wiki/en/toolworks/docs/apparatus/steady-tick?rev=1617383160 = 1a

Last update: 2021/04/02 17:06

Turbopedia - http://turbanov.ru/wiki/

https://docs.unrealengine.com/en-US/BlueprintAPI/Math/Float/Lerp/index.html
http://turbanov.ru/wiki/
http://turbanov.ru/wiki/en/toolworks/docs/apparatus/steady-tick?rev=1617383160

	Steady Ticking

