
2025/07/25 17:44 1/4 Steady Ticking

Turbopedia - http://turbanov.ru/wiki/

Steady Ticking

Almost all video-games (and thereby game engines) have a common technique for iterating on the
game process. The game is basically run in a loop. This loop is thereby called a game loop. On each
iteration of this loop the game should prepare and actualize the state of the game for rendering and
perform the graphics rendering itself. The time that it takes to process and render each frame this
way is of course variable. You may suddenly have a computationally and/or graphically intensive
frame, for example.

Delta Time Delta Time

In order for the game logic to actualize the game state this variable delta time is usually passed to it
to be able to “step” to this current frame from the previous one. This is implemented with a Tick
event node and a Delta Seconds argument within Unreal Engine:

This technique is fine when you’re playing some kind of pre-baked animation where results are clearly
determined in time. Unfortunately that is not always the case, since games are generally interactive
and the situation always changes.

If we apply a variable frame rate to such concepts as collision detection and physics simulation, their
stability will decrease considerably if the frame time is increased. Consider the following example.

We have a ball physics simulation. The ball is stepping its position according to its velocity (which in
turn results from gravity and other forces application). When the time step is stable and small
enough, everything works as expected, but as soon as the one of the frames lags the system
becomes unstable and the ball may actually fall through the ground, resulting in a totally inaccurate
behavior.



2025/07/25 17:44 2/4 Steady Ticking

Turbopedia - http://turbanov.ru/wiki/

Large Delta Time

Smaller Delta Time

Our goal would be to stabilize the frame time and in turn stabilize the calculations.



2025/07/25 17:44 3/4 Steady Ticking

Turbopedia - http://turbanov.ru/wiki/

Stable Delta Time

Unreal Engine’s physics engine has a way to stabilize the frame rate by supplying the maximum
frame time:

If the actual frame time is higher than this value, the physics engine will still receive this value as its
delta time to step with. This in turn will result in a slowdown of game time. Something like a slow-mo
effect, but the simulation would not lose its stability, i.e. it won’t be lower than the supplied tolerated
value.

Another way to achieve the physics stability effect is to use Unreal Engine’s sub-stepping. You can
read the linked official documentation for more information on that topic.

Apparatus provides a somewhat similar concept to a sub-stepping that is called “Steady Ticking”.

https://docs.unrealengine.com/en-US/InteractiveExperiences/Physics/Substepping/index.html


2025/07/25 17:44 4/4 Steady Ticking

Turbopedia - http://turbanov.ru/wiki/

From:
http://turbanov.ru/wiki/ - Turbopedia

Permanent link:
http://turbanov.ru/wiki/en/toolworks/docs/apparatus/steady-tick?rev=1616528014

Last update: 2021/03/23 22:33

http://turbanov.ru/wiki/
http://turbanov.ru/wiki/en/toolworks/docs/apparatus/steady-tick?rev=1616528014

	Steady Ticking

