
2024/03/29 17:03 1/7 Steady Ticking

Turbopedia - http://turbanov.ru/wiki/

Steady Ticking

Almost all video-games (and thereby game engines) have a common technique for iterating on the
game process. The game is basically run in a loop. This loop is thereby called a game loop. On each
iteration of this loop the game should prepare and actualize the state of the game for rendering and
perform the graphics rendering itself. These iterations are called Ticks within Unreal Engine. They are
like a heartbeat to your game.

Like a human heartbeat, tick intervals can be varying in time, i.e. the time that it takes to process and
render each frame is variable. You may suddenly have a computationally and/or graphically intensive
frame, for example, and this in turn may result in a longer tick interval.

Delta Time Delta Time

In order for the game logic to actualize the game state this variable delta time is usually passed to it
to be able to “step” to this current frame from the previous one. This is implemented with a Tick
event node and a Delta Seconds argument within Unreal Engine:

This technique is fine when you’re playing some kind of pre-baked animation where results are clearly
determined in time. Unfortunately that is not always the case, since games are generally interactive
and the situation always changes.

If we apply a variable frame rate to such concepts as collision detection and physics simulation, their
stability will decrease considerably if the frame time is increased. Consider the following example.

We have a ball physics simulation. The ball is stepping its position according to its velocity (which in
turn results from gravity and other forces application). When the time step is stable and small
enough, everything works as expected, but as soon as the one of the frames lags the system
becomes unstable and the ball may actually fall through the ground, resulting in a totally inaccurate
behavior.



2024/03/29 17:03 2/7 Steady Ticking

Turbopedia - http://turbanov.ru/wiki/

Large Delta Time

Smaller Delta Time

Our goal would be to stabilize the frame time and in turn stabilize the calculations.



2024/03/29 17:03 3/7 Steady Ticking

Turbopedia - http://turbanov.ru/wiki/

Stable Delta Time

Unreal Engine’s physics engine has a way to stabilize the frame rate by supplying the maximum
frame time:

If the actual frame time is higher than this value, the physics engine will still receive this value as its
delta time to step with. This in turn will result in a slowdown of game time. Something like a slow-mo
effect, but the simulation would not lose its stability, i.e. it won’t be lower than the supplied tolerated
value.

Another way to achieve the physics stability effect is to use Unreal Engine’s sub-stepping. You can
read the linked official documentation for more information on that topic.

Apparatus provides a somewhat similar concept to a sub-stepping that is called “Steady Ticking”.
Each of Mechanisms implements a special Steady Tick event:

https://docs.unrealengine.com/en-US/InteractiveExperiences/Physics/Substepping/index.html
http://turbanov.ru/wiki/en/toolworks/docs/apparatus/mechanism


2024/03/29 17:03 4/7 Steady Ticking

Turbopedia - http://turbanov.ru/wiki/

Steady ticks are fixed-rate ticks that a run in parallel to the main variable-rate ticks. The “in parallel”
wording isn’t related to multi-threading but merely a logical terminology.

Steady Ticks

Variable Ticks

Each stable tick should actualize the

On the picture you can see that there may be multiple steady ticks during a single variable tick
interval. Likewise there may be multiple variable ticks during a single steady tick interval. These
multiple ticks can result in some undesired jerky movement. To solve this issue an interpolation is
needed.

During the variable “native” ticking we have to interpolate between the previous steady state and the
next one. It’s up to the user to do the actual interpolation but Apparatus provides a functional basis to
do this.

First, there is a steady frame ratio node available:

This node returns the ratio of the current variable tick in relation to an active steady frame it resides
within. For a better understanding see the following schematic:



2024/03/29 17:03 5/7 Steady Ticking

Turbopedia - http://turbanov.ru/wiki/

Steady Ticks

Variable Ticks

1/3 1/2 1/4 3/4 9/10

Steady Frame Ratio

This ratio, which is bound from 0.0 to 1.0 (both inclusively), can be used to interpolate the animated
visual feedback of some value based on its previous and the next state. In order to achieve that, your
steady ticking mechanics have to prepare both states during their processing, while perhaps
swapping the past state with the future one. The usual variadic ticking then can use a Lerp node to
implement the actual smoothing.

Sometimes it’s tedious (or kind of difficult) to manage both past and future states in some auxiliary
separate variables. You may want to use the current object’s state instead of its past one - store it in
an Actor’s current transform, for example. So we present an another way of smoothing things out -
the Steady Future Factor node.

This node is similar to Steady Frame Ratio in that it is also returning a single float value bound to an
inclusive [0.0, 1.0] range. It differs in the actual basis for this range. Let’s illustrate it on the picture:

https://docs.unrealengine.com/en-US/BlueprintAPI/Math/Float/Lerp/index.html
https://docs.unrealengine.com/en-US/BlueprintAPI/Math/Float/Lerp/index.html


2024/03/29 17:03 6/7 Steady Ticking

Turbopedia - http://turbanov.ru/wiki/

Steady Ticks

Variable Ticks

1/2 1/5 3/4 3/41/3 6/10

Steady Future Factor

As you see, the last change (be it steady or a usual tick) is tracked and remembered as a starting
point for the relation. The second part is the same as for the Steady Frame Factor node and actually
represents a timestamp of the next future steady frame. Using the future factor you can use the
current actual state as a base for Lerping with a next future state. Just be attentive to your
calculations and make sure you actually keep track of what your are lerping to what.

Both of these nodes can be used directly during the Tick event in your mechanisms. However, we
implemented a special type of mechanical event called Presentation Tick event, that essentially
incorporates them both:

This event is run after your normal variable ticks (and hence after the necessary steady ticking) and is
meant to be used for evaluating the visual feedback mechanics. Interpolating mechanics are logically
and clearly one of those. Have a look at this complete position interpolation mechanic that is a part of
our sample platformer project:

https://docs.unrealengine.com/en-US/BlueprintAPI/Math/Float/Lerp/index.html
https://docs.unrealengine.com/en-US/BlueprintAPI/Math/Float/Lerp/index.html
https://github.com/toolworks/ApparatusPlatformer


2024/03/29 17:03 7/7 Steady Ticking

Turbopedia - http://turbanov.ru/wiki/

The most important Apply Offset function is implemented like so:

Concluding the topic it should be said that the described technique is not mandatory at all. You can
evaluate your mechanics anyhow you like and configure the engine to produce fixed FPS updates. We,
however, presented you a way to achieve a consistent gameplay framerate and also recommend
using it for stability reasons.

From:
http://turbanov.ru/wiki/ - Turbopedia

Permanent link:
http://turbanov.ru/wiki/en/toolworks/docs/apparatus/steady-tick

Last update: 2021/04/08 22:24

http://turbanov.ru/wiki/
http://turbanov.ru/wiki/en/toolworks/docs/apparatus/steady-tick

	Steady Ticking

