2025/11/02 19:01 1/2 Operating

Operating
The newer and more robust way of processing your chains is through the process called operating.

C++ Workflow

Using a Lambda

You can easily operate on your chain via a C++ lambda and this is how you do it:

Chain->0perate([] (const FChain::FCursor& Cursor, FMyTrait Trait)
{

});

The type of cursor here must match the type of the chain used. Note that you're not allowed to
acquire a reference to the trait while processing a non-solid chain, only its copy. So in order to
operate on a solid chain, you could do something like this:

SolidChain->0Operate([] (const FSolidChain::FCursor& Cursor, FMyTrait& Trait)
{

});
Now you can change the properties (fields) of the trait directly, without copying involved.
Concurrency

Solid Chains also support a special type of operating - a multi-threaded one. The function to call is
explicitly named with a Concurrently prefix and accepts two more arguments: the number of tasks
to utilize and the minimum number of slots (Entity places) per each such task. For example:

SolidChain->0perateConcurrently([](const FSolidChain::FCursor& Cursor,
FMyTrait& Trait)

{

}, 4, 32);

Turbopedia - http://turbanov.ru/wiki/



2025/11/02 19:01 2/2 Operating

From:
http://turbanov.ru/wiki/ - Turbopedia

Permanent link:

Last update: 2021/08/28 21:12

Turbopedia - http://turbanov.ru/wiki/


http://turbanov.ru/wiki/
http://turbanov.ru/wiki/en/toolworks/docs/apparatus/operating?rev=1630185133

	Operating
	C++ Workflow
	Using a Lambda
	Concurrency



