2026/02/04 14:25 1/3 Mechanical

Mechanical

ECS clearly separates the data and the logic operating on that data. This logic in turn is usually
executed on an iterative per-frame basis. Apparatus implements this animation-like functionality via a
concept called Mechanical. Mechanicals are complex in nature and comprise multiple Mechanics that
are executed inside of them.

C++ Workflow

If you're going the C++ way, creating your Mechanicals goes like this.

1. Open the main UE File menu and choose the “New C++ Class...” option:
File | Edit Window Help

B Mew Level .

B OpenLevel..
Current
Current As...

e All Levels

Submit to Source Control...
roject
"Fk MNew Pro | Bl

2. In the opened window mark the “Show All Classes” checkbox:
Add C++ Class

"3 show All Classes

3. Now you can select any of the base classes available including the Apparatus ones. Choose the
Mechanical Actor as a base class:

Turbopedia - http://turbanov.ru/wiki/

2026/02/04 14:25 2/3 Mechanical

Choose Parent Class

This will add a C++ header and source code file to your game project.

MechanicalActor

Y Mechanicalbc Al
4. Click “Next” and you should see a name choosing dialog. Adjust the name of the class as

needed and proceed by pressing the green “Create Class” button at the bottom:

Eriber & name |
when you click utton below, a header (h] file and a sowrce (o file: will be made us

MName MyMechanicaldctar Public Privale

Path B w30 50UICE e - - Choose Folder

Header File Saui

5. The new class gets created as a combo of its header (.h) and a source file (.cpp). All in the
Source (sub)folder of your project. You should now see them in the IDE of your choice:

% Build.cs

L.Cpp

Foo.cpp

Foo.h

MyMechanicalActor.h
6. Note that you may have to recompile the project and/or restart the Editor after that. Don’t be
scared by some possible errors here, regenerate the IDE project, rebuild and start again.

RUN AND DEBUG [> Generate Project Files (~ % -

7. The corresponding file contents should be as:
o MyMechanicalActor.h:

// Fill out your copyright notice in the Description page of
Project Settings.

#pragma once

#include "CoreMinimal.h"

Turbopedia - http://turbanov.ru/wiki/

2026/02/04 14:25 3/3 Mechanical

#include "MechanicalActor.h"
#include "MyMechanicalActor.generated.h"

/x*
*
*/
UCLASS ()
class MY API AMyMechanicalActor : public AMechanicalActor
{
GENERATED BODY ()
¥

o MyMechanicalActor.cpp:

// Fill out your copyright notice in the Description page of
Project Settings.

#include "MyMechanicalActor.h"

8. Now you can override a single (or multiple) Tick method(s) as you usually would do in C++...
o ... in the header:

void Tick(float DeltaTime) override;

o ... and the source file:

void AMyMechanicalActor::Tick(float DeltaTime)
{

// Your mechanical code here...

}

9. Proceed creating a Filter to enchain the Chunks/Belts in order to be iterated upon.

From:
http://turbanov.ru/wiki/ - Turbopedia

Permanent link:
http://turbanov.ru/wiki/en/toolworks/docs/apparatus/mechanical

Last update: 2021/06/18 19:23

Turbopedia - http://turbanov.ru/wiki/

http://turbanov.ru/wiki/en/toolworks/docs/apparatus/filter
http://turbanov.ru/wiki/en/toolworks/docs/apparatus/enchaining
http://turbanov.ru/wiki/en/toolworks/docs/apparatus/iterating
http://turbanov.ru/wiki/
http://turbanov.ru/wiki/en/toolworks/docs/apparatus/mechanical

	Mechanical
	C++ Workflow

