2025/11/16 21:07 1/2 Iterating

Iterating

In order to implement your actual Mechanic logic you have to be able to process all of the Filter-
matching Subjects (and Subjectives, which are in turn - Subjects). For the purpose of effectiveness
and consistency this is not done directly but via Chains. You iterate those Chains iterating all the
Subjects and Subjectives inside them.

Chains are iterated with the help of Cursors. Those are very much like container iterators. Multiple
Cursors are available but this is more of a multi-threading future-proofing. For now, you should really
use a single default Cursor only.

C++ Workflow

Iterating a Chain is done through a special type of object called Cursor. You can have as many of
those, but usually one is enough:

FChain: :FCursor Cursor = Chain->Iterate();

The solid-variant would logically be like so:

FSolidChain: :FCursor SolidCursor = SolidChain->Iterate();

When you got the Cursor needed, you can construct a simple while loop like so:

while (Cursor.Operate())

{

auto Trait = Cursor.GetTrait<FMyTrait>();

The .Operate() method prepares the needed state and would return false when there are no
more slots available.

With a solid Cursor you can get a direct (copy-free) reference to a Trait:

while (SolidCursor.Operate())

{
auto& Trait = SolidCursor.GetTraitRef<FMyTrait>();

Turbopedia - http://turbanov.ru/wiki/

http://turbanov.ru/wiki/en/toolworks/docs/apparatus/filter
http://turbanov.ru/wiki/en/toolworks/docs/apparatus/enchaining

2025/11/16 21:07 2/2 Iterating

}

Embedded Cursors

Apparatus provides a way to iterate the chains via embedded (self-allocated) cursors also.

Your basic loop is quite simple. It’s just a while statement with a single condition:

while (Chain.BeginOrAdvance())

{
}

Inside this loop you can implement some actual logic. Using the %@ Subject's direct or % Chain's utility
methods:

while (Chain.BeginOrAdvance())

{
FSubjectHandle Subject = Chain.GetSubject();
UMyDetail* MyPosition = Chain.GetDetail<UMyDetail>();
FMyTrait MyVelocity;
Chain.GetTrait(MyVelocity);
MyPosition->X += MyVelocity.VelocityX * DeltaTime;
MyPosition->Y += MyVelocity.VelocityY * DeltaTime;

MyVelocity.VelocityX = 0;
MyVelocity.VelocityY = 0;
Subject.SetTrait (MyVelocity);

When the Chain Cursor is gone past the last available Subject/Subjective the Chain becomes disposed
and the previously locked Chunks and Belts become unlocked again, applying all the pending changes
(if there are any).

From:
http://turbanov.ru/wiki/ - Turbopedia

Permanent link:

Last update: 2021/08/29 10:44

Turbopedia - http://turbanov.ru/wiki/

https://turbanov.ru/toolworks/apparatus/docs/api/struct_f_subject_handle.html
https://turbanov.ru/toolworks/apparatus/docs/api/struct_f_chain.html
https://turbanov.ru/toolworks/apparatus/docs/api/struct_f_subject_handle.html
https://turbanov.ru/toolworks/apparatus/docs/api/struct_f_chain.html
http://turbanov.ru/wiki/
http://turbanov.ru/wiki/en/toolworks/docs/apparatus/iterating?rev=1630233873

	Iterating
	C++ Workflow
	Embedded Cursors

