
2025/10/16 23:25 1/4 Introduction to ECS

Turbopedia - http://turbanov.ru/wiki/

Introduction to ECS

OOP Quirks & Limitations

Prior to exploring the ECS main concepts, we should address the object-oriented programming
(OOP) pattern and some of the issues related to it. That’s because the current state of Unreal Engine’s
user-level API is basically OOP-based. Even the actor’s component model is somewhat limited and is
mostly static in nature. It really shouldn’t be confused with a data-oriented approach we’re presenting
you with.

A large portion of C++ language is also OOP and it was one of the main reasons behind its original
design. It seems like the general top-level UE‘s architecture was heavily based on C++ some
features, or at least was heavily inspired by them. That’s quite logical if you think of it. In the end
C++ is the main language behind the tech. The Unreal build toolset (UBT and UHT) is implemented in
C# which is also an OOP language by the way.

So, when we develop games (and software in general) the OOP-way, we usually decompose all of the
available entities and concepts into the hierarchies of their corresponding types. In terms of Unreal
Engine those are mainly called Objects (or UObjects if we are talking about C++ coding part). We
create hierarchies of classes that are all derived from a single root UObject ancestor. Every time we
create a new Blueprint (or a C++ class) it basically derives from this root class.

As the time goes we notice that our classes become more and more in common and begin to 
refactor the codebase (or the Blueprint assets), while extracting those common facilities into some
separate base classes. Those in turn become the ancestors and we derive certain types from them,
that should share their functionality.

A quite popular example for that approach is a tree of animal inheritance, where a root class
represents basically any animal existing (something like UObject), while others derived represent
some separate animal sorts and kinds on their own:

https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://docs.unrealengine.com/en-US/API/Runtime/CoreUObject/UObject/UObject
https://docs.unrealengine.com/en-US/API/Runtime/CoreUObject/UObject/UObject
https://en.wikipedia.org/wiki/Code_refactoring
https://en.wikipedia.org/wiki/Code_refactoring


2025/10/16 23:25 2/4 Introduction to ECS

Turbopedia - http://turbanov.ru/wiki/

The descendant types inherit the properties of their respective base types, so by altering the base
class properties we also change the current state of the objects, if they are of some derived
descendant type. We can also introduce some "virtual" overridable methods to be able to modify
their behavior in the derived classes.

All of that functionality surely look quite useful and nice, isn’t it? Well yes it is, until you have like 100
classes. The problem here is that your game logic becomes too scattered across the class-layers in
the hierarchy. You tend to forget what is defined on what level, what is overridable and what’s not.
The amount of coupling between the entities becomes scary and error-prone. Your coding partners
who wrote some aspect of the base classes, become the keepers of some “secret knowledge”. The
time of refactoring sky-rockets for this every-growing hierarchy. This “ceremonial” job becomes your
job itself, but not the development of the final end-user features. Not a good thing at all, considering
how limited the time and resources can be.

ECS to The Rescues

A solution to this hassle could be an approach called Entity–component–system (or ECS for short).

There are no hierarchies in terms of ECS, as every game object (i.e. entity) is basically flat in its
nature. It consists of data-only parts called components. You can combine those arbitrary on a per-
entity basis.

Want your RPG character become a poison damage dealer? Add a poisonous component to it and
consider it done, as long as you also implement a system that actually solves the poison mechanic.

Systems are remote to the details they operate upon. That’s also a feature of ECS. They are like
distant code blocks that take certain details as their operands and evaluate a certain result. Systems
are run after other systems and together they form a complete pipeline of your game.

https://en.wikipedia.org/wiki/Virtual_function
https://en.wikipedia.org/wiki/Virtual_function
https://en.wikipedia.org/wiki/Entity_component_system
https://en.wikipedia.org/wiki/Entity_component_system


2025/10/16 23:25 3/4 Introduction to ECS

Turbopedia - http://turbanov.ru/wiki/

That’s basically it. But how come such a useful concept is not implemented in Unreal Engine yet?
Well, it actually is, take Niagara as an example. The rendering pipeline can also be considered a
pipeline. In other words, that may be all sorts of specific data-driven approaches taken in Unreal
Engine, but none of them are as general-purpose as its OOP nature. We provide such approach for
any of the user-available side of the Engine!

Make sure your read our Apparatus to ECS Glossary to get to know our terminology.

About ECS+

Apparatus takes a broader approach on ECS that we essentially call ECS+ over here. It introduces a
greater amount of flexibility with the help of detail (component) inheritance support and sparse
expandable, dynamic belts (chunks and archetypes), subject (entity) booting, etc. The term ECS+ in
itself should be treated as more of a synonym for the “Apparatus” wording itself, since the product
actually implements it and uses a different terminology from the ground up.

Generally speaking, in our own development philosophy, engineering should never be “pure” or
“mathematically correct” but mainly applicable and useful to the end user and/or the developer.
Unreal Engine in itself is actually a good demonstration of this approach with so many special cases
and design patterns. By having both OOP and ECS patterns combined Apparatus takes the best of
three worlds, with UE‘s blueprint world counted.

Built-in Subjects

At a lower level, Subjective is an interface and any class that implements it may be called a
Subject. There are several subjects already implemented in the framework:

SubjectiveActorComponent (based on ActorComponent),
SubjectiveUserWidget (based on UserWidget),
SubjectiveActor (based on Actor).

Those should be sufficient for the most cases, but you can easily implement your own additional
subject classes in C++.

Built-in Mechanisms

The Mechanical class is also an interface, with the most useful mechanisms already implemented:

MechanicalActor (inherited from Actor),
MechanicalGameModeBase (GameModeBase),
MechanicalGameMode (GameMode).

You would hardly ever need to implement your own mechanisms. Should you wish to, you can also do
it in C++.

http://turbanov.ru/wiki/en/toolworks/docs/apparatus/ecs-glossary


2025/10/16 23:25 4/4 Introduction to ECS

Turbopedia - http://turbanov.ru/wiki/

From:
http://turbanov.ru/wiki/ - Turbopedia

Permanent link:
http://turbanov.ru/wiki/en/toolworks/docs/apparatus/ecs?rev=1638552536

Last update: 2021/12/03 20:28

http://turbanov.ru/wiki/
http://turbanov.ru/wiki/en/toolworks/docs/apparatus/ecs?rev=1638552536

	Introduction to ECS
	OOP Quirks & Limitations
	ECS to The Rescues
	About ECS+
	Built-in Subjects
	Built-in Mechanisms



