
2025/10/16 23:25 1/2 Introduction to ECS

Turbopedia - http://turbanov.ru/wiki/

Introduction to ECS

Talking about object-oriented programming (OOP), we consider our practical task as multiplicity of
special abstract things. In terms of Unreal Engine these abstractions are mainly called Objects (or
UObjects code-wise). Furthermore we apply a principle like an inheritance upon them. We create
some main abstraction layer called ‘Base class’, define some properties (i.e. variables and functions)
and by deriving from that class we can create other abstractions which in turn get all the parent
properties and define their own additional, distinctive ones. The most popular example for that
approach is a tree of animal inheritance, where the base class represent any animal existing, but the
others (derived from the base one) represent some separate animal sorts and kinds:

By using the base class properties we can change the current state of the objects in the derived class.
But the problem is the game logic can become too scattered across those classes and layers.

A solution to this game development problem is an approach called ECS.

Apparatus provides all of the basic ECS idioms and even more. To be unambiguous the framework it
uses a different naming scheme as compared to classic ECS. Here is the list of analogous terms:

ECS Term Apparatus Term
Entity Subject
Component Detail
System Mechanic
A group of Systems Mechanism
Archetype Fingerprint
Chunk Belt

https://en.wikipedia.org/wiki/Entity_component_system
https://en.wikipedia.org/wiki/Entity_component_system


2025/10/16 23:25 2/2 Introduction to ECS

Turbopedia - http://turbanov.ru/wiki/

About ECS+

Apparatus takes a broader approach on ECS that we essentially call ECS+ over here. It introduces a
greater amount of flexibility with the help of detail (component) inheritance support and sparse
expandable, dynamic belts (chunks and archetypes). The term ECS+ in itself should be treated as
more of a synonym for the “Apparatus” wording itself, since it actually implements it and uses a
different terminology from a classic ECS.

Generally speaking, in our own philosophy, engineering should never be “pure” or “mathematically
correct” but mainly applicable and useful to the end user and/or the developer. Unreal Engine in itself
is actually a good demonstration of this approach with so many special cases.

Built-in Subjects

At a lower level, Subjective is an interface and any class that implements it may be called a
Subject. There are several subjects already implemented in the framework:

SubjectiveActorComponent (based on ActorComponent),
SubjectiveUserWidget (based on UserWidget),
SubjectiveActor (based on Actor).

Those should be sufficient for the most cases, but you can easily implement your own additional
subject classes in C++.

Built-in Mechanisms

The Mechanical class is also an interface, with the most useful mechanisms already implemented:

MechanicalActor (inherited from Actor),
MechanicalGameModeBase (GameModeBase),
MechanicalGameMode (GameMode).

You would hardly ever need to implement your own mechanisms. Should you wish to, you can also do
it in C++.

From:
http://turbanov.ru/wiki/ - Turbopedia

Permanent link:
http://turbanov.ru/wiki/en/toolworks/docs/apparatus/ecs?rev=1617866692

Last update: 2021/04/08 10:24

http://turbanov.ru/wiki/
http://turbanov.ru/wiki/en/toolworks/docs/apparatus/ecs?rev=1617866692

	Introduction to ECS
	About ECS+
	Built-in Subjects
	Built-in Mechanisms


