2026/01/21 05:38 1/3 Introduction to ECS

Introduction to ECS+

Talking about OOP (object-oriented programming) we consider our practical task as multiplicity of
special abstract things. In terms of UE4 these abstractions are named UObjects and over them we can
apply such a principle like an inheritance. What does it mean? We create some main abstraction
called ‘Base class’, define properties (i.e. variables and functions) and by deriving from that class we
can create other abstractions which will get all the parent properties and define their own additional
or distinctive ones. The most popular example in that way is the tree of animals inheritance, where
the base class represent any animal exist, but the others (derived from the base one) represent
separate animal sorts:

(Base class \
ANIMAL
eCan breathe eHas health
eHas skin eCan eat
4 Derived class N (Derived class \
BIRDS FISH
eCan walk eHas beak eCan swim *Has fins
eHas plumage o ... eHas scales .
_ primag J
4)
CHICKENS
eVery fluffy & cute
eBut can hit with the beak
_ y,

By using base class properties we can change current state of objects of derived class. But the
problem is the game logic can become too scattered across the classes. In game development there
is such an approach named ECS (that is Entity component system).

So what are the main concepts? Here we make an attempt to understand each abstraction as
individual entity. Globally, there are some states each entity may be in or not. From this point of view,
each entity can be represented as vector of 1-es and 0-es, where each vector’'s component represents
if the entity at the current moment is in the defined state or not. That’s more: some entities may be
constructed in such a way that they fundamentally can’t go to certain states. For example, let us say
we declare state ‘swimming’ and the entity ‘house’ then (that’s quite logical) we can’t move ‘house’
entity to the ‘swimming’ state. So then each vector now have different components number
depending on which entity it represents. Now let’s call vector component representing certain state
type as ‘detail’. Each entity has a variety of details and each detail of the entity has the value 0
(‘disabled’) if the entity isn’t in the detail state right now, and the value 1(‘enabled’) if the entity is in
the corresponding state.

You can imagine each entity as a box of details. These details have the bool variable ‘bActive’ and if
it's set to 0 - then the detail is disabled and is enabled otherwise. There is ability to remove and add
details dynamically if it's necessary. For example ‘man’ can get hurt from the pistol shot in the chest
but only not when he has the bulletproof vest (technically you can declare such a detail like ‘getting a

Turbopedia - http://turbanov.ru/wiki/

https://en.wikipedia.org/wiki/Entity_component_system

2026/01/21 05:38 2/3 Introduction to ECS

pistol shot” what will be something like ‘temporary state’ and immediately should be replaced by
other detail like ‘injured’ one).

Ok, we have some entities which contain different details. Furthermore we can apply some changes to
all the entities based on which details they have and if these details are enabled or not. For example,
for each entity which has the details ‘burnable’ and ‘burning’ both enabled, we can decrease their
health (or armor) and then disable (or absolutely remove) ‘burning’ details from them (simply
speaking, the fire went out).

As you understand these changes are actually defining the whole game logic and we have to run
them continuously during the playing to keep dynamics of states. It's also quite clear we can place all
the code which will apply these changes in the one class, so it becomes easier to view and modify
them. That class called ‘Mechanism’ and it’s responsible for applying changes to each object
depending on which details it has. Now the whole picture is next:

Entity

Detail: Moveable
Detail: Skin

Entity

Detail: Moveable

If
(stillPlaying)
For each
entity

entity has details
‘Broken leg’ &

Decrease health;
Disable detail
‘Moveable’ if

necessary.

Entity

| Demweazbe |

Detail: Broken leg

Other Entities. ..

o
ol))

entity has other
set of details ..

There are some
non-processed entities.

This entity was injured: the
‘movable’ detail is disabled and
thus it can’t move any more.

e All entities were
processed.

Here disabled details are crossed out, but details which will produce some changes are highlighted. Of
course a mechanism can’t process entities parallelly, instead it iterate other each entity and check
determined cases. Each case declares which details should the entity has and which of them should
be enabled or disabled. If an entity complies with the case requirements, some changes will be
applied to it, else the next case will be checked out and so so on. Thus, the ‘case’ is something
contains a vector of 0-es and 1-es representing ‘being in certain states’:

Turbopedia - http://turbanov.ru/wiki/

2026/01/21 05:38 3/3 Introduction to ECS

Case: Another case:

eEnabled detail eEnabled detail

"Moveable' "Jumpable’

eEnabled detail eEnabled detail

"Moving' "Jumping’
eDisabled detail
"Hurt'

A programmer declares cases and what actions to undertake for each entity what complying with the
case. You should also understand that the ‘another case’ in the example above will
determine what to execute over the entities what have the detail ‘hurt’ disabled and the
entities what haven'’t this detail. You also may say the iteration across all the entities is slower
than the use of UE4 dispatchers or simple function calling, but on the low level it's coded in the most
optimized way, so actually there is no any difference.

From:
http://turbanov.ru/wiki/ - Turbopedia

Permanent link: _
http://turbanov.ru/wiki/en/toolworks/docs/apparatus/ecs?rev=1617390823 :=

Last update: 2021/04/02 19:13

Turbopedia - http://turbanov.ru/wiki/

http://turbanov.ru/wiki/
http://turbanov.ru/wiki/en/toolworks/docs/apparatus/ecs?rev=1617390823

	[Introduction to ECS+]
	[Introduction to ECS+]
	Introduction to ECS+

