2025/10/25 11:13 1/3 Detail

Detail

Details are the main building data blocks in Apparatus. They are high-level entities (unlike Traits),
which support some additional ECS+ functionality like multi-iterating and inheritance.

Details do derive from % UObject and are subject to garbage collecting and Unreal’s general memory
model.

Creating Details

C++ Workflow

In order to create a Detail visible in your C++ source code you have to do the following:

- Open the main UE File menu and choose the “New C++ Class...” option:

File | Edit Window Help
Load and ¢

T
™ New Project...
™ Open Project...
&+ New C++ Class... N

b

Cook Content for Windows

1. In the opened window mark the “Show All Classes” checkbox:
Add'C++ Class

[show All Classes

2. Now you can select any of the base classes available including the Apparatus ones. Choose the

Turbopedia - http://turbanov.ru/wiki/

https://docs.unrealengine.com/en-US/API/Runtime/CoreUObject/UObject/UObject
https://docs.unrealengine.com/en-US/API/Runtime/CoreUObject/UObject/UObject

2025/10/25 11:13 2/3 Detail

Detail as a base class:

4Q) Object
i®

AT Brush

Volume
®: | ightmassCharacterindirectDetailVolume

O Detail A

4Q Factory The base subjective data class.
O DetailF

. F . ata[etail: a yop
3. Click “Next” and you should see a name choosing dialog. Adjust the name of the class as
needed and proceed by pressing the green “Create Class” button at the bottom:

heyDoetail Apparatushark (Funitime)~ ST

i ey Source/ Rl LR/ Choose Folder

4. The new class gets created as a combo of its header (.h) and a source file (.cpp). All in the
Source (sub)folder of your project. You should now see them in the IDE of your choice:

Build.cs
Cpp
h
Foo.cpp
Foo.h
MyDetail.cpp
MyDetail.h

5. Note that you may have to recompile the project and/or restart the Editor after that. Don’t be
scared by some possible errors here, regenerate the IDE project, rebuild and start again.

RUN AND DEBUG [> Generate Project Files (. ~ o3 .-

6. The corresponding file contents should be as:
o MyDetail.h:

// Fill out your copyright notice in the Description page of
Project Settings.

#pragma once

#include "CoreMinimal.h"
#include "Detail.h"

Turbopedia - http://turbanov.ru/wiki/

2025/10/25 11:13 3/3 Detail

#include "MyDetail.generated.h"

/**

*

*/

UCLASS ()

class ME API UMyDetail : public UDetail

{
GENERATED BODY ()
i
o MyMechanicalActor.cpp:

// Fill out your copyright notice in the Description page of
Project Settings.

#include "MyDetail.h"

7. Now you can add some data fields to the class as usually in, right in the C++ header:

float X
float Y

0;
0;

8. Perhaps you would also like to expose those fields as properties in order to access them from
BPs and even change their initial values through the Ul (for more info, please see % Properties):

UPROPERTY (BlueprintReadWrite, EditAnywhere)
float X = 0;

UPROPERTY (BlueprintReadWrite, EditAnywhere)
float Y = 0;

9. Your C++-friendly Detail should be ready to use now. Please, refer to % APl Reference for
additional information.

From:
http://turbanov.ru/wiki/ - Turbopedia

Permanent link: 4
http://turbanov.ru/wiki/en/toolworks/docs/apparatus/detail?rev=1623416541 L

Last update: 2021/06/11 13:02

Turbopedia - http://turbanov.ru/wiki/

https://docs.unrealengine.com/en-US/ProgrammingAndScripting/GameplayArchitecture/Properties
https://docs.unrealengine.com/en-US/ProgrammingAndScripting/GameplayArchitecture/Properties
https://turbanov.ru/toolworks/apparatus/docs/api/class_u_detail.html
https://turbanov.ru/toolworks/apparatus/docs/api/class_u_detail.html
http://turbanov.ru/wiki/
http://turbanov.ru/wiki/en/toolworks/docs/apparatus/detail?rev=1623416541

	Detail
	Creating Details
	C++ Workflow

