2025/07/20 13:13 1/3 Deferred Operations (Deferreds)

Deferred Operations (Deferreds)

It’s no secret and if fact by design, that you can’t execute methods that change a Subject’s structure
when using the Solid semantics. That essentially means you can only change the state of the
individual Traits themselves, but not add nor remove the Traits themselves. The main advantage of
the Solid enchaining is that it provides for the concurrent Operating and it would certainly be great to
have more flexibility while evaluating the multi-threaded processing.

So there come handy the deferred operations (or Deferreds for short). Like the naming implies, those
are not executed immediately but are instead delayed for a later, more suitable occasion. Please
note, that the Deferreds API is available for C++ only, since the whole Solid semantics is also C++-
based and it's not possible to Enchain into a Solid Chain in Blueprints.

Setting Traits

Say, we are implementing a real-time strategy game. A user can select multiple units and assign
them orders (tasks). Send them marching to a destination point, for example. We could defer the Trait
setting operation while Operating concurrently on the selected units, using the corresponding = API
method. Check out this exemplary snippet:

FVector Destination = GetUserClickedPoint(); // Retrieve the currently user-
clicked point on the map.
auto SolidChain = Mechanism->EnchainSolid(TFilter<FUnit, FSelected>()); //
Enchain all of the selected units.
SolidChain->0perateConcurrently([Destination] (FSolidSubjectHandle Unit) //
Process the selected units in a parallel fashion.
{

Unit.SetTraitDeferred(FMoveToPointOrder{Destination}); // Defer-assign a
Trait that's telling the unit to move to the needed point.

});

Removing Traits

Removing Traits can also be deferred in a quite similar fashion. Here’'s an APl usage example which
removes a “buffed” status from the units, when it's expiring:

SolidChain->0perateConcurrently([DeltaSeconds] (FSolidSubjectHandle Unit,
FBuffed& Buffed) // Process the selected units in a parallel fashion.
{

Buffed.Timeout -= DeltaSeconds; // Decrease the initially allocated
timeout using the current Tick's delta time period.

if (Buffed.Timeout <= 0.0f)

Turbopedia - http://turbanov.ru/wiki/


http://turbanov.ru/wiki/en/toolworks/docs/apparatus/operating
https://turbanov.ru/toolworks/apparatus/docs/api/struct_t_subject_handle.html#aaf2792c8de37733f58dc913d7b9241af
https://turbanov.ru/toolworks/apparatus/docs/api/struct_t_subject_handle.html#aaf2792c8de37733f58dc913d7b9241af
https://turbanov.ru/toolworks/apparatus/docs/api/struct_t_subject_handle.html#aaf2792c8de37733f58dc913d7b9241af
https://turbanov.ru/toolworks/apparatus/docs/api/struct_t_subject_handle.html#a56e0ae342a44051765f2a784718c188d
https://turbanov.ru/toolworks/apparatus/docs/api/struct_t_subject_handle.html#a56e0ae342a44051765f2a784718c188d

2025/07/20 13:13 2/3 Deferred Operations (Deferreds)

{

Unit.RemoveTraitDeferred<FBuffed>(); // Defer-remove the Trait when
it's no longer viable.

}
)

There is also a possibility to remove all the traits altogether. In a deferred fashion of course. This is
just a matter of calling the corresponding * method as in here:

Unit.RemoveAllTraitsDeferred();

Spawning Subjects

Not only traits can be added or removed in a deferred fashion but the whole Subjects can be spawned
and despawned this way. So, if you have multiple units spawning a projectile when they’re charged,
you could do it like so:

SolidChain->0perateConcurrently([Mechanism,
DeltaSeconds] (FSolidSubjectHandle Unit, FCharging& Charging, FDamageDealeré&

DamageDealer)

{
Charging.Timeout -= DeltaSeconds;
if (Charging.Timeout <= 0.0f)
{

Mechanism->SpawnDeferred(FProjectile{DamageDealer.Power}); // Spawn
a new subject with an FProjectile trait.

}
});

Despawning Subjects

The process of destroying a Subject is quite analogous. Kill all units once their health is zero or below.
Just do something like:

SolidChain->0perateConcurrently([](FSolidSubjectHandle Unit, FHealth&
Health)

{
if (Health.Level <= 0.0f)
{
Unit.DespawnDeferred();
}
})s

Turbopedia - http://turbanov.ru/wiki/


https://turbanov.ru/toolworks/apparatus/docs/api/struct_t_subject_handle.html#a71c1b5b8374a70ed9371d102241533a2
https://turbanov.ru/toolworks/apparatus/docs/api/struct_t_subject_handle.html#a71c1b5b8374a70ed9371d102241533a2

2025/07/20 13:13 3/3 Deferred Operations (Deferreds)

Applying

Until when? This is quite a logical question when dealing with something that is deferred by design.
And the default answer is “when the time is right”. That essentially means that the behavior is
automatic by default, i.e. when the corresponding Mechanism’s Chain gets disposed and the current
active state is non-Solid.

The default automatic behavior minimizes the effort and guarantees that the Deferreds get applied
accordingly, but maybe you would like to have more control on when and where the application is
happening. This is exactly why the concept of Deferreds Applicators was introduced.

Deferreds Applicators are created explicitly, by calling the # UMechanism::CreateDeferredsApplicator
method as in:

{ // Start of the explicit scope.
auto Applicator = Mechanism->CreateDeferredsApplicator();
Mechanism->EnchainSolid(...)->0perateConcurrently([](){
// Your first mechanic producing deferred operations.
B
// The Deferreds won't be applied at this point.
Mechanism->EnchainSolid(...)->0perateConcurrently([](){
// Your second mechanic producing deferred operations.
});
// Now the Deferreds get actually applied.
} // End of the explicit scope.

Note that the Applicator is actually introduced within its own explicit scope (the curly brace’d region).
That is in fact done on purpose since the Applicator will apply the pending changes right when it is
destroyed, which is guaranteed by Applicator being a local (automatic) variable and the {} scope.

From:
http://turbanov.ru/wiki/ - Turbopedia

Permanent link:
http://turbanov.ru/wiki/en/toolworks/docs/apparatus/deferred

Last update: 2022/06/08 22:06

Turbopedia - http://turbanov.ru/wiki/


https://turbanov.ru/toolworks/apparatus/docs/api/class_a_mechanism.html#ac658045eedfb7def7bd238dae45cc676
https://turbanov.ru/toolworks/apparatus/docs/api/class_a_mechanism.html#ac658045eedfb7def7bd238dae45cc676
http://turbanov.ru/wiki/
http://turbanov.ru/wiki/en/toolworks/docs/apparatus/deferred

	Deferred Operations (Deferreds)
	Setting Traits
	Removing Traits
	Spawning Subjects
	Despawning Subjects
	Applying

