
2024/05/20 19:26 1/1 Filtering

Turbopedia - http://turbanov.ru/wiki/

Filter

Filters present a way to narrow down the iterating process down to Subjects and Subjects with only
certain combinations of Traits and Details. Filtering can be both including (positive) and excluding
(negative). Including means that a Subject (or Subjective) must definitely have Traits (or Details) from
the list. Excluding means otherwise - it must *not* have any of those.

The positive and negative parts can and should be used along with each other. Remember, that
Apparatus is heavily optimized for all sorts of filtering involved, it doesn’t exactly “search” for data
but uses some fast masking procedures. Testing with a Filter of 100 Details is roughly the same as
testing with a single one.

C++ Workflow

What you do is you basically create a FFingerprint instance. There are different constructors and
methods available for this struct and you can use the most fitting for your case. As an example, let’s
create a Filter of one Trait and one Detail, valid for Booted Subjects only:

#include "Filter.h"

...

FFilter MyFilter(EBootFilter::Booted);
Filter += UMyDetail::StaticClass();
Filter += FMyTrait::StaticStruct();

You can now use the assembled filter to enchain the Belts or Chunks and iterate on them.

From:
http://turbanov.ru/wiki/ - Turbopedia

Permanent link:
http://turbanov.ru/wiki/en/toolworks/docs/apparatus/filter?rev=1624043871

Last update: 2021/06/18 22:17

https://turbanov.ru/toolworks/apparatus/docs/api/struct_f_fingerprint.html
https://turbanov.ru/toolworks/apparatus/docs/api/struct_f_fingerprint.html
http://turbanov.ru/wiki/en/toolworks/docs/apparatus/enchaining
http://turbanov.ru/wiki/
http://turbanov.ru/wiki/en/toolworks/docs/apparatus/filter?rev=1624043871

	Filter
	C++ Workflow


